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Problem Statement e Continuous spike and slab prior: [10] proposed using the continuous spike Numerical Experiments

and slab priors for precision matrices. This prior imposes a two-component
Gaussian mixture on the off-diagonal entries of {2, enabling an efficient block e Simulated data: We simulate 10 replications, each with a random graph where p = 300 and n € {50, 100}. The graph density is set to p € {0.002, 0.02}.

The precision matrix € is sampled from the G-Wishart distribution: €2 ~ Wg(3, I).

e In high-dimensional settings where n < p, learning the structure of sparse
Gibbs sampling procedure known as Stochastic Search Structure Learning

(SSSL). However, under high-dimensional settings, its computational cost o For SEMMS, we set a non-informative initial number of non-nulls to be 10 for all nodewise regressions.

can still be too long. e Benchmark: The benchmark methods include SSSL and GLASSO.

— For SSSL, we use 2000 iterations for burn-in and an additional 5000 iterations for posterior estimation, as recommended by [10]. We initialize the

Gaussian graphical models (GGMs) is an important problem with many
applications.

e Frequentist methods, such as graphical Lasso (GLASSO), are fast but tend
to produce many false positives [4]. Bayesian methods based on Markov

Empirical Bayes Methodology

chain Monte Carlo (MCMC) are reported to have lower false positive and . . . . i . . . . oL
Markov chain with an empty graph. To ensure the starting covariance matrix is positive definite, we use the empirical covariance matrix, adjusting the

better edge selection, but are slow [3; 10]. . . . .
o Nodewise regression: A natural approach to edge selection of the underlying diagonals by adding the median value of the diagonals when n < p. The hyperparameters are set to ¢ = 0.02, v = 2, and A = 2.

e We propose an empirical Bayes approach based on Expectation Maximiza- . . L
prop P yes app P graph G is to perform nodewise regression [6], where we regress one node on For GLASSO, the penalty parameter is chosen using 3-fold cross validation.

tion (EM) that is faster than Bayesian methods and retain their high graph _ . _ _ | _ o o _
all the other nodes. For a given node 7, the associated regression parameter e Performance metrics: To evaluate performance of graph structure learning, we report the mean and standard deviation of standard metrics, including
B; € RP defines the edges between node j and the other nodes: (f3;); # true positive rate (TPR), false positive rate (FPR), Matthews's correlation coefficient (MCC) and computing time. All methods are run on 1 core for
0 < (J,k) e F.

e Scalable empirical Bayes model selection (SEMMS): For each node, SEMMS

models the continuous response y € R using an additive combination of
K ‘putative’ variables z;. with coefficients u;.. It assumes that a small but e Results: SEMMS outperforms SSSL and GLASSO in structure learning accuracy at a graph density of 0.002, achieving a significantly FPR. At a graph

density of 0.02, SEMMS demonstrates a comparable MCC to SSSL with substantially faster runtime.

selection accuracy.

comparison.

TP-TN —FP-FN
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Significance

MCC =

e Why Gaussian graphical models?

— GGMs capture conditional dependencies between random variables in the

. . . . . . unknown set of candidate predictors have a non-zero effect on the response.
sparsity structure of the inverse covariance matrix, or the precision matrix

0—y-1 e e Figure demonstrates the importance of a low FPR. In high-dimensional sparse graphs, a FPR of just 0.026 can produce misleading results.
. 25025681 118271171818 %L 16
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However, these approaches face scalability issues in high-dimensional set- Here, zj, are the candidate predictors, uy, are the random effects, and -, GLASSO 0-534 (0.021) 0.072 (0.013) 0.235 {0.019) 6.6 (3.3) m B
tings due to the computational burden of MCMC. are treated as latent variables. We are most interested in edge selection, Method TPR FPR MCC Time N oA
which means identifying which latent variables {~;.} are positive, negative, Density 0.002 ue 04, 7022“8;&8127 .
e Our approach: or null (zero) SEMMS 0.611 (0.094) 0.001 (0.000) 0.555 (0.075) 2.6 (1.8) m g%j;g%”@%g ?1%42% i
i - | A s
— We employ the scalable empirical Bayes model selection (SEMMS) method, . . . >S5l 0686 (0.079) 0.007 (0.001) 0.323 (0.047) 16.0 (0.3) h i Pl ﬁé%%%gﬁiivg
| o _ _ In matrix notation, we denote the n X (p — 1) matrix (z;,.) by Z, and GLASSO 0.745 (0.094) 0.020 (0.011) 0.250 (0.089) 55.1 (9.5) s o e S, é%éggéﬁa z
introduced by [1], within the neighborhood selection framework proposed . _ Densi 5 L ﬁfgggl%ﬁg
X write I' = diag(y1,72,...,7p—1) and u = pul,_1. Let z; denote the k-th ensity 0.0 22?82974?492%@%@#641715978‘5 o
y [6]. column of Z. Then the model can be rewritten as SEMMS 0.256 (0.009) 0.001 (0.001) 0.460 (0.027) 53.6 (2.5) s ;?%772532;237 N
— SEMMS performs nodewise variable selection with high accuracy in high- SSsL 0.452 (0.016) 0.006 (0.001) 0.509 (0.017) 15.9 (0.3) h i
: : : _ . GLASSO 0.663 (0.026) 0.095 (0.022) 0.259 (0.027) 12.2 (10.6 - »
dimensional settings where n < p and can be efficiently computed with y =Zlu+¢ (0.026) ( ) ( ) (106) m

parallelization. where € ~ N (0, JgIn)

ZTu | T ~ N(ZTp, 0°ZTZ")

Table 1: Mean (SD) of structure learning and computing time performance

for {n,p} = {50,300} (top) and {n,p} = {100,300} (bottom).

Figure 1: A graph of density 0.002 (top) versus GLASSO output

] using n = 50 (bottom), with TPR of 0.757 and FPR of 0.026.
Background & Prior Work
Thus, y ~ N(ZTw,021, + 0?ZI'Z’). Parameter estimation in SEMMS

for 8 = {pu,
Minimization (GAM) algorithm, which is an efficient and convergent variant
of the EM algorithm.

e Data: We use six replicates of 200 fMRI data points (TR=720
ms) from 86 brain regions of a randomly selected subject. Data is

fMRI Data Application

Partial Correlation GLASSO

e One can relate a random vector that follows a multivariate normal distri- a2, po, 1, P2, gg} is carried out using a Generalized Alternating

bution to an underlying graph structure G = (V, E), where V is the obtained from the Human Connectome Project (HCP).

e \We estimate functional connectivity using SEMMS, SSSL, GLASSO,

set of vertices and E is the set of edges. Consider a sample of n

i.i.d. observations of a p-dimensional random vector X = (X1,..., X)) . - . . .
ore X iid Niy(0 Q—l) T Y struct £ th . GAM algorithm: Specifically, in the M step, we plug in the current estimates =i = and partial correlations, averaging the estimates across the six repli-
WNEre ~ . € Sparsity structure o € precision ma- " " mi 05 05 i
oyl p ta N Py d o e of the posterior expected vglues of the Iateznt variables {7;.} and maximize cates. SEMMS not only reveals the block structure present in the
FiX — captures € conditional Inaependence reiationsnip among I — Imizi I 0. 05 . . . .
_ with respect to 6 = {41,0%, po, P1, P—1,0¢ }- Ma?mlzmg with respect to i i partial correlations but also provides the most sparse edge selection.
variables: _ _ > i1 Ly=s)
_ ields the relative frequency ps = . In the E step,
0y, P15 1 y K R f
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X; L Xy | Xy qjan € wip =0 (j,k) ¢ E we update the latent variables {7} using Bayes' rule
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