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Problem Statement

• In high-dimensional settings where n < p, learning the structure of sparse

Gaussian graphical models (GGMs) is an important problem with many

applications.

• Frequentist methods, such as graphical Lasso (GLASSO), are fast but tend

to produce many false positives [4]. Bayesian methods based on Markov

chain Monte Carlo (MCMC) are reported to have lower false positive and

better edge selection, but are slow [8; 10].

• We propose an empirical Bayes approach based on Expectation Maximiza-

tion (EM) that is faster than Bayesian methods and retain their high graph

selection accuracy.

Significance

• Why Gaussian graphical models?

– GGMs capture conditional dependencies between random variables in the

sparsity structure of the inverse covariance matrix, or the precision matrix

Ω = Σ−1.

– Applications of GGMs include cancer gene co-expression networks [2; 8],

brain functional connectivity [5], and joint credit risk network [10].

• Current challenges of graph recovery:

– Full Bayesian methods, such as the G-Wishart and spike and slab priors,

have shown favorable comparisons to GLASSO, particularly in terms of

reducing the false positive rate [10].

– However, these approaches face scalability issues in high-dimensional set-

tings due to the computational burden of MCMC.

• Our approach:

– We employ the scalable empirical Bayes model selection (SEMMS) method,

introduced by [1], within the neighborhood selection framework proposed

by [6].

– SEMMS performs nodewise variable selection with high accuracy in high-

dimensional settings where n < p and can be efficiently computed with

parallelization.

Background & Prior Work

• One can relate a random vector that follows a multivariate normal distri-

bution to an underlying graph structure G = (V,E), where V is the

set of vertices and E is the set of edges. Consider a sample of n

i.i.d. observations of a p-dimensional random vector X = (X1, . . . , Xp)

where X
iid∼ Np(0, Ω

−1). The sparsity structure of the precision ma-

trix Ω = Σ−1 captures the conditional independence relationship among

variables:

Xj ⊥ Xk | XV \{(j,k)} ⇔ ωjk = 0 ⇔ (j, k) /∈ E

• Our goal is to recover the underlying graph structure G (structure learn-

ing).

• G-Wishart prior: Many popular methods are based on the G-Wishart prior

for precision matrices, which is conjugate to the multivariate Gaussian

likelihood [3; 9; 7]. However, posterior computation under the G-Wishart

prior is a non-trivial task due to the calculation of the normalizing con-

stant of the marginal likelihoods.

• Continuous spike and slab prior: [10] proposed using the continuous spike

and slab priors for precision matrices. This prior imposes a two-component

Gaussian mixture on the off-diagonal entries of Ω, enabling an efficient block

Gibbs sampling procedure known as Stochastic Search Structure Learning

(SSSL). However, under high-dimensional settings, its computational cost

can still be too long.

Empirical Bayes Methodology

• Nodewise regression: A natural approach to edge selection of the underlying

graph G is to perform nodewise regression [6], where we regress one node on

all the other nodes. For a given node j, the associated regression parameter

βj ∈ Rp defines the edges between node j and the other nodes: (βj)k ̸=
0 ⇐⇒ (j, k) ∈ E.

• Scalable empirical Bayes model selection (SEMMS): For each node, SEMMS

models the continuous response y ∈ Rn using an additive combination of

K ‘putative’ variables zk with coefficients uk. It assumes that a small but

unknown set of candidate predictors have a non-zero effect on the response.

y =

K∑
k=1

zkγkuk + ε

where uk
iid∼ N(µ, σ2)

γk
iid∼ multinomial(0, 1,−1; p0, p1, p−1)

ε ∼ N(0, σ2eIn)

• Here, zk are the candidate predictors, uk are the random effects, and γk
are treated as latent variables. We are most interested in edge selection,

which means identifying which latent variables {γk} are positive, negative,

or null (zero).

• In matrix notation, we denote the n × (p − 1) matrix (zik) by Z, and

write Γ ≡ diag(γ1, γ2, . . . , γp−1) and µ = µ1p−1. Let zk denote the k-th

column of Z. Then the model can be rewritten as

y = ZΓu + ε

where ε ∼ N(0n, σ
2
eIn)

ZΓu | Γ ∼ N(ZΓµ, σ2ZΓZ′)

Thus, y ∼ N(ZΓµ, σ2eIn + σ2ZΓZ′). Parameter estimation in SEMMS

for θ = {µ, σ2, p0, p1, p2, σ2e} is carried out using a Generalized Alternating

Minimization (GAM) algorithm, which is an efficient and convergent variant

of the EM algorithm.

• GAM algorithm: Specifically, in the M step, we plug in the current estimates

of the posterior expected values of the latent variables {γk} and maximize

with respect to θ = {µ, σ2, p0, p1, p−1, σ
2
e}. Maximizing with respect to

{p0, p1, p−1} yields the relative frequency ps =

∑K
k=1 1{γk=s}

K . In the E step,

we update the latent variables {γk} using Bayes’ rule

Pr(γk = 0) =
p
(t)
0 f (y; γk = 0; γ−k = γ

(t)
−k)∑

s∈{−1,0,1} p
(t)
i(s)

f (y; γk = s; γ−k = γ
(t)
−k)

• For each node, we select an edge when Pr(γk ̸= 0) > 0.01.

• We symmetrize the sparsity pattern for the output graph using standard

post-processing techniques, applying OR rule as described in [6].

Numerical Experiments

• Simulated data: We simulate 10 replications, each with a random graph where p = 300 and n ∈ {50, 100}. The graph density is set to p ∈ {0.002, 0.02}.
The precision matrix Ω is sampled from the G-Wishart distribution: Ω ∼ WG(3, Ip).

• For SEMMS, we set a non-informative initial number of non-nulls to be 10 for all nodewise regressions.

• Benchmark: The benchmark methods include SSSL and GLASSO.

– For SSSL, we use 2000 iterations for burn-in and an additional 5000 iterations for posterior estimation, as recommended by [10]. We initialize the

Markov chain with an empty graph. To ensure the starting covariance matrix is positive definite, we use the empirical covariance matrix, adjusting the

diagonals by adding the median value of the diagonals when n < p. The hyperparameters are set to ϵ = 0.02, v = 2, and λ = 2.

– For GLASSO, the penalty parameter is chosen using 3-fold cross validation.

• Performance metrics: To evaluate performance of graph structure learning, we report the mean and standard deviation of standard metrics, including

true positive rate (TPR), false positive rate (FPR), Matthews’s correlation coefficient (MCC) and computing time. All methods are run on 1 core for

comparison.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

• Results: SEMMS outperforms SSSL and GLASSO in structure learning accuracy at a graph density of 0.002, achieving a significantly FPR. At a graph

density of 0.02, SEMMS demonstrates a comparable MCC to SSSL with substantially faster runtime.

• Figure demonstrates the importance of a low FPR. In high-dimensional sparse graphs, a FPR of just 0.026 can produce misleading results.

Method TPR FPR MCC Time

Density 0.002

SEMMS 0.471 (0.099) 0.001 (0.000) 0.442 (0.082) 23.2 (1.0) s

SSSL 0.627 (0.084) 0.028 (0.002) 0.156 (0.028) 15.7 (0.2) h

GLASSO 0.539 (0.125) 0.012 (0.012) 0.276 (0.114) 67.9 (8.3) s

Density 0.02

SEMMS 0.200 (0.013) 0.001 (0.000) 0.389 (0.018) 18.6 (0.5) s

SSSL 0.342 (0.029) 0.012 (0.004) 0.342 (0.025) 15.6 (0.3) h

GLASSO 0.534 (0.021) 0.072 (0.013) 0.235 (0.019) 6.6 (3.3) m

Method TPR FPR MCC Time

Density 0.002

SEMMS 0.611 (0.094) 0.001 (0.000) 0.555 (0.075) 2.6 (1.8) m

SSSL 0.686 (0.079) 0.007 (0.001) 0.323 (0.047) 16.0 (0.3) h

GLASSO 0.745 (0.094) 0.020 (0.011) 0.250 (0.089) 55.1 (9.5) s

Density 0.02

SEMMS 0.256 (0.009) 0.001 (0.001) 0.460 (0.027) 53.6 (2.5) s

SSSL 0.452 (0.016) 0.006 (0.001) 0.509 (0.017) 15.9 (0.3) h

GLASSO 0.663 (0.026) 0.095 (0.022) 0.259 (0.027) 12.2 (10.6) m

Table 1: Mean (SD) of structure learning and computing time performance

for {n, p} = {50, 300} (top) and {n, p} = {100, 300} (bottom).
Figure 1: A graph of density 0.002 (top) versus GLASSO output

using n = 50 (bottom), with TPR of 0.757 and FPR of 0.026.

fMRI Data Application • Data: We use six replicates of 200 fMRI data points (TR=720

ms) from 86 brain regions of a randomly selected subject. Data is

obtained from the Human Connectome Project (HCP).

• We estimate functional connectivity using SEMMS, SSSL, GLASSO,

and partial correlations, averaging the estimates across the six repli-

cates. SEMMS not only reveals the block structure present in the

partial correlations but also provides the most sparse edge selection.
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